next up previous contents
Next: The Future of Linux Up: The Linux Edge Previous: Kernel Modules

Portability Today

Linux today has achieved many of the design goals that people originally assumed only a microkernel architecture could achieve.

By constructing a general kernel model drawn from elements common across typical architecture, the Linux kernel gets many of the portability benefits that otherwise require an abstraction layer, without paying the performance penalty paid by microkernels.

By allowing for kernel modules, hardware-specific code can often be confined to a module, keeping the core kernel highly portable. Device drivers are a good example of effective use of kernel modules to keep hardware specifics in the modules. This is a good middle ground between putting all the hardware specifics in the core kernel, which makes for a fast but unportable kernel, and putting all the hardware specifics in user space, which results in a system that is either slow, unstable, or both.

But Linux's approach to portability has been good for the development community surrounding Linux as well. The decisions that motivate portability also enable a large group to work simultaneously on parts of Linux without the kernel getting beyond my control. The architecture generalizations on which Linux is based give me a frame of reference to check kernel changes against, and provide enough abstraction that I don't have to keep completely separate forks of the code for separate architectures. So even though a large number of people work on Linux, the core kernel remains something I can keep track of. And the kernel modules provide an obvious way for programmers to work independently on parts of the system that really should be independent.


next up previous contents
Next: The Future of Linux Up: The Linux Edge Previous: Kernel Modules

Download this document: [src.tar.gz][ps.gz][html.tar.gz][dvi.gz]

Open Resources (www.openresources.com)
Last updated: 1999-08-06